APPROXIMATE CALCULATION OF THE ADDED
MASS IN FLOW AROUND A MULTIROW
ARRAY OF RODS

V. 1. Fedenko

A method of calculating effective masses of multirow clusters of elastic-cylindrical rods is
presented. The flow of liquid caused by lateral vibrations of the rods is described approxi-
mately using a model of cells.

1, The Model of the Cells. The work [1] is devoted to calculation of effective masses of single-row
clusters of cylindrical rods, As far as calculation of effective masses of multirow clusters is concerned,
this has been very little studied up to now because of the complexity of taking into account the restriction
of the flow of liquid in the cluster.

The proposed method is based on replacing the multirow cluster of cylindrical rods (Fig. 1a) by a
combination of isolated cells, one of which is shown in Fig, 1b. The cell consists of two coaxial cylinders;
the inner cylinder represents a rod of the cluster, and the outer cylinder simulates the restriction of the
flow which is caused by lateral vibrations of the inner cylinder.

Let each rod of the cluster be surrounded by a liquid which fills a certain region (Fig. le). It is then
possible to find from the condition of continuity of flow of liquid flowing through the cell and through the
above mentioned region a relationship between the radius of the outer cylinder b and the spacing h of the
rods in the cluster, and also the connection between the relationship between the radii of the cylinders
forming the cells and the density of the cluster

b=mx"%h, a]b="1,n'"g (g=2a/h) (1.1)
where ¢ is the outer radius of the rod of the cluster, and q is the density of the cluster.

Hence, determination of the effective mass of a rod located in the cluster is reduced to calculation of
the effective mass of this rod located inside a cylinder with a radius b.

The problem is solved by the hypothesis that the rods of the cluster have a finite length and arbitrary
supports at the ends, and they carry out small elastic vibrations.

The liquid which flows round the rod is considered as ideal and compressible, but its flow is consid-
ered as irrotational.

The flow of liquid in the cell is described by the wave equation
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with the following boundary conditions:
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Here ¢ is the velocity potential, I is the length of the rod, and x is
the displacement of the rod which is equal to

2= A4a(fa(2),  gu=Cy1008py° = Cysin p,t (1.4)
n=3

In these expressions fp is the form of the n-th mode of the vibrations
of the rod in the liquid, which has been taken o be equal to the mode of the
vibrations in a vacuum; 4y is the main coordinate; C; and C, are the
arbitrary constants determined by the initial conditions of the problem;
Py’ i the frequency of the n~th mode of the free vibrations of the rod in
Fig. 1 the liquid,

The velocity potential is determined in the following form:
cp——-cosBZ| 4, ZFS(r)NS(z) (1.5)
f==] $==]1

The function Fs(r) must satisfy the first two boundary conditions (1.3), and the function Ns(z) must
satisfy the remaining boundary conditions. The two latter conditions are satisfied if we assume

N, (2) = cos (nsz / I) (1.6)
By substituting the expression (1.5) into the original Eqs. (1.2), taking (1.6) into account, we have
&Fs | 1 dF, as\e 4PVl e
Phyt 77‘[(7> +T<_C) 1F,=0 (1.7)
The solution of this equation will be
Fs=Allﬁn—;-]—g:—)r]—}—BKl[(E;—{—f—?—)r} (1.8)

Here A and B are arbitrary constants; I, and K, are modified Bessel functions.,

After calculation of the arbitrary constants [using the first two conditions '3 (1.3)], the formula for
the velocity potential assumes the form

(p=—i—6039 Dl Z[Kl(ocr)- ;‘1(;1;)11( r)}
n=1 §=1
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The kinetic energy of the liquid which fills the doubly connected region is equal to

T=_%SS@2—C§Zd81 {1.10)

S

Here S, is the surface of the rod, and p° is the density of the liquid.

A similar integral over the surface of the outer cylinder of the cell in the same formula disappears
due to the second condition (1.3),

After substitution of the value of the velocity potential into this formula and integration, which is
carried out over the surface of the rod, the kinetic energy of the liquid is determined

T = ap° 2 0 2 &sn [an(z) cos _dz} (1.11)

n==1 5=1
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In this equation

g, = ‘ K1 (Ba) + 12 (Br) £ (Be)
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For kinetic energy of the liquid we have [2]

o0
I'= 1/7& 2 MNOQn.? (1o13)

n==1

Here Mn" is the reduced effective mass of the rod which is loca~-
ted in the cell; this connected mass corresponds with the n-th mode
01 of vibration; dy, is the velocity of the reduced point of the rod when it
4 i vibrates in the n~th mode.

If we compare the right-hand part of Egs, (1,11) and (1.13), we

. / have |

zi Mnfz 2%‘% %ﬁ[gj‘ﬂ (z) cos {[;Edz]z (1.14)

s=1 o

2. Experimental Basis of the Model of the Cells. When a clus-
761 : ter is replaced by a combination of isolated cells in a calculation of
/,y effective masses, a certain error is introduced. Firstly, in the case
of a substitution of this kind the arrangement of the rods in the clus~
ter (straight, staggered, etc.) is not taken into account. Secondly, the

18 LA actual clusters consist of a finite number of rods, and therefore the
/ ! flow round the central and peripheral rods is different.
P
Ma P Ty The influence of the above~mentioned factors on the connected
mass of clusters was analyzed using experimental data obtained on an
Fig, 3 experimental apparatus; a diagram is given in Fig, 2.

A cluster of tubes 1 was used as the model of the cluster. The space between the tubes was filled
with water,

The vibrations of the tubes were excited by a momentary pulse which was generated by the impact of
the plate of the impact machine, on which the model is fixed, against the shock absorber,

Recording of the vibrational process is carried out by a strain-gauge circuit which consists of a
strain gauge 2 and a converter 3.

The boundary of the area of free vibrations of the tubes was established from the recordings of the
accelerations of their support sections; these were carried out by the measuring unit which con-
sisted of acceleration transducers 4, a cathode follower 5, and an amplifier 6. The processes were record-
ed by a loop oscillograph 7,

The coefficients of the effective masses were calculated according to the formula

M My
T=E=EK

AP

Ef 1] (2.1)
Here M® is the effective mass of the tubes; M is the mass of the tubes; M, is the mass of water en-

closed by the tubes; p, p® are the frequencies of the free vibrations of the tubes in air and water, deter-

mined according to the oscillograms of the stresses.

The tests were carried out at cluster densities of 0.61, 0.70, 0.78, and 0.87,

In order to evaluate the influence of the form of layout of the rods in the clusters on the magnitude of
the effective masses, clusters with staggered and straight arrangement of the tubes were tested. The tests
showed that the form arrangement does not have a substantial influence on the effective mass in the case of
the same densities of the clusters (Fig, 3, curve 1 shows a straight arrangement of the tubes; curve 2
shows a staggered arrangement of the tubes).
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By determining the coefficients v for tubes located in different parts of the cluster, the problem of
the difference in the magnitudes of the effective masses of the central and peripheral tubes is explained,
The test results showed that this difference for the same cluster did not exceed 10-15%,

This means that for a multirow cluster containing k rods the effective mass can be determined as
the effective mass of one rod, which is multiplied k times.

3. Analysis of the Results Obtained, It is found from (1.14) that the effective mass of the rod, which
is located in the cell, depends on the dimensionless magnitude pn° a/c, which characterizes the compres-
sibility of the liquid. Analysis shows that the reduction of the effective mass by the compressibility of the
liguid only becomes noticeable in the case of high-frequency vibrations (pn"a/c > 2). In practical calcula~
tions, therefore, the liquid can be considered as incompressible, i.e., in the ratio (1,12) it is assumed that

C = oo,

Taking the above into account, the expression for determining the effective mass of the clusters of
rods has the form

oo 4

M, =2k .:%’ M %’l[g)‘n(z) €08 i‘;—z-_'dz]2 {3.1)
4]

where the coefficient {4, is calculated according to Eq. (1.12) for the values
Br=msall, By =2n""P, /¢ (3.2)

The series in Eq, {3.1) converges rapidly. In many cases the first two or three terms of the series
give an accuracy which is sufficient for practical purposes.

It is seen from Eq, (3.2) that the effective mass of the cluster depends on the relative length of the
rods I/a and the density q.

For relatively short rods (I/a < 5) the axial component of the movement of the particles of the liquid
has a considerable magnitude. With increase in the relative length, however, the part played by this com-
ponent decreases, and when /g > 30 it is possible to take into account only the radial component of the
movement of the particles of the liquid, that is, the flow is considered to be plane.

With regard to the density of the cluster, as this increases the effective mass increases, which is
seen from the graph of the relationship v{q), which is given in Fig. 3 (curve 3) and consiructed for the
case /o = 30,

When this graph is compared with curves 1 and 2, which are plotted according to experimental data,
it is seen that the calculated data correspond sufficiently well with the results of the tests., This means
that it is possible to use the model which we have examined for approximate calculations of effective
masses of multirow clusters of rods.
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